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Motion sensor of smart phone and daily use




Chasing rotation and direction of wrist using gyroscope

to deduce four digit PIN with high accuracy
Only a few sensors(GPS,camera) as for permission

App and websites can monitor data from user's sensor
HEELY

Stealing PINs via Mobile Sensors:

Actual Risk versus User Perception

Maryam Mehrnezhad, Ehsan Toreini, Siamak F. Shahandashti, Feng Hao

School of Computing Science, Newcastle University, Newcastle upon Tyne, UK




Theory
» Different user/gesture->click number button->different
move of cellphone->different wave from sensors




« JS background
monitor

« HTML5 GUI
shows random
PINs for input

- different gesture




feature extraction using 12 components from 4 sensors

Consider range,average,energy of the sequence in time and frequency
domain(FFT)

Correlation coefficient

Cov(A, B)
Rap = —

ANN , 2500 records from 10 people X 114 features
/0%train15%validate15%test
Matlab with one hidden layer and 1000 nodes



success rate:one attempts <80%,increase for
multiple ,3 times close to100%

Attempts | Multple-users | Same-user

Table 1: PINlogger.)s’s PIN identification rates in differ-
ent attempts.

Attempts | Multiple-users | Same-user
One

Table 2: Average digit identification rates in different at-
tempts.




We want to promote

» Study coordinates directly instead of buttons

» recognize more than PIN:complex keys, even all
the touch events

» avoid error comparing to buttons

of great importance for secure user's information



Collect and learn




Collecting program
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Machine learning {c} Input test
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Collecting procedure




Collecting program:typical touch event

acceleration and rotation of barycentre
peak at the touching moment:

use theroshold to judge an event




Collecting program:typical touch
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Collecting program : select the sensor

.values[@] \cceleration force along the s (including g
values[1] eleration force along the y axis (including

.values[2] Acceleration force along the z axis (including

.values[e] ation around the x

values[1] Rate of rotation around the y

.values[2] Rate of rotation around the z a

values[8] Acceleration force along the x axis (excluding gravity).
.values[1] Acceleration force along the y axis {excluding gravity).
values[2] Acceleration force along the z axis (excluding gravity).
.values[@] Rotation vector component along the x axis (x = sin(B/2)). Lnitless
values[1] Rotation v omponent along the y axis (y = sin(B/2)).

.values[2] Rotation vector component along the z axis (z = sin(B8/2))

.values[3] Scalar component of the rotation vector ((cos(8/2)).1



Collecting program@js:front and back

Q=60 00 or.d'U 80%4 1718 AQM=6.0 100 or.d' 81%4 17:18
Collecter ServiceCollector
START
to coolect,
PAUSE
to write,
0,0

at left corner
of top.




Collecting program:co

object[<tap_in

object[<tap_inc

object[<tap_inc

object[<tap index>][1-4].timestamp
object[<tap_index>][1-4].data

RS

pp/src/main
AndroidManifest.xml
Java

L— Com

L example

res

F__ drawable
|— la yout

| F—— activity collecting.xml
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Collecting procedure

 Limited source:data from one people using right hand
» spread evenly in the keyboard area
5000 valid touch , data:coordinates(x,y),13

motion sensors



Machine learning@python3
Preprocessing

trainla

for j in ra




Machine learning:establish neural network

« tensorflow&ctflearn&sklearn

X,netlabel :input training data and placeholder of labels

tflearn.Istm netwrok:default

tflearn layers.recurrentIstm (incoming, n_units, activation="tanh’', inner_activation="sigmoid’, dropout=MNone, bias=True, weights_init=Mone

forget bias=1.0, return_seq=False, return_state=False, initial_state=None, dynamic=False, trainable=True, restore=True, reuse=False.
scope=MNone, name='L5TM")

Istm dropout ratio:0.7 ->avoid overfitting

return_seq=False:return value for every wave ( 64nodes )
tflearn.fully connected:full connected layer
least RMS for coordinates and training



Machine learning:establish neural network
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ez —
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Machine learning:train neural network

» Xaccuracy&yaccuracyphased accuracy on test set
» cost:loss




Machine learning:evaluation

« Standard : half finger point , £150px
« Error distribution : centered around orgin point

-800 -600 400 =200



Machine learning:evaluation

. Very smaII average(compared to 150):accurate enough

countx=0_0
county=>0
[ ] I i
N for ¥ in a:
if (abs{(1[0])<150) :
countx+=1
if{abs({1[1])<150):
'_|-'||_|.I1t +_-.

print('x:"',countx/np.shape{test) [0])

print('y:"',county/np.shape (test) [0])

w '_--I:_' ll_'l_a.EE':.T-Il:r: ll_J_
: E.?EZ 910840932117




Input test

« Input a sentence and recognize letters in sequence
« error:1/12 , accuracy:91.7%
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Future work




Shortcomings

* limited time and computaion abilities

* gpu:840m

» time costing collecting work

« not general enough(only 1 people, 1 gesture)



Improvement in the future

» Shrink collecting time, get more features,
using less data

* better neural network

 better computer

» more people,more gesture

 from coordinates to contents

» study more than coordinates



From coordinates to contents

 PIN

» slide PIN

o full QWERTY,Pinyin 9 keys
More:

 APP history

« web history

 shopping history



Study more than coordinates

« pedometer,gait analysis

 optimal path in racing games

» using phone sensor to control aircrafts

More:

» dectect conditions of patients with
epencephalondisease

» path analysis, guidance for the old and the
kids






