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1. Introduction 

The governing equations for mantle convection are derived from conservation laws of 

mass, momentum and energy. The temperature- and stress-dependent mantle viscosity in 

the momentum equation and nonlinear coupling between flow velocity and temperature 

in the energy equation require that numerical methods be used to solve these governing 

equations.  

In this chapter, we will present several commonly used numerical methods in studies 

of mantle convection. We will first present governing equations, boundary and initial 

conditions for a mantle convection problem, and discuss the general strategy to 

numerically solve the convection problem (section 2). We will focus on a finite element 

method (section 3), while also discussing basic principles of finite difference, finite 

volume, and spectral methods (section 4). Our discussions are mostly for thermal 

convection in homogeneous, incompressible fluids with the Boussinesq approximation. 

However, we will also describe methods for more complicated and realistic mantle 

conditions including non-Newtonian rheology, solid-state phase transitions, and 

thermochemical (i.e., multi-component) convection (section 5). Following discussions on 

the methods, we will present some simple examples of thermal convection modeling with 

emphases on comparison with the boundary layer theory and structural formation 

dynamics from thermal convection and (section 6). At the end, we will discuss the new 

developments in computational sciences that may impact our future studies of mantle 

convection modeling.    

2. Governing Equations and Initial and Boundary Conditions 

The simplest mathematical formulation for mantle convection assumes 

incompressibility and the Boussinesq approximation. Under this formulation, the 

nondimensional conservation equations of the mass, momentum, and energy are 
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where ui, σij, T, and γ are the velocity, stress tensor, temperature, and heat production rate, 

respectively; Ra is a Rayleigh number, δiz is a Kronecker delta function. Repeated indices 

denote summation, and u,i represents partial derivative of variable u with respect to 

coordinate xi. These equations were obtained by using the following characteristic scales: 

length D, time D2/κ; and temperature ΔT, where D is often the thickness of the mantle or 

a fluid, κ is thermal diffusivity, and ΔT is the temperature difference across the fluid layer. 

The stress tensor can be related to strain rate via the following constitutive equation  

)(2 ,, ijjiijijijij uuPP ++−=+−= ηδηεδσ ,                                      (4) 

where P is the dynamic pressure and η is the viscosity. 

Substituting equations (4) into (2) reveals three primary unknown variables: pressure, 

velocity, and temperature. The three governing equations (1)-(3) are sufficient to solve 

for these unknowns with adequate boundary and initial conditions. Initial condition is 

only needed for temperature due to its first order derivative with respect to time in the 

energy equation. Boundary conditions are in general a combination of prescribed stress 

and velocity for the momentum equation and of prescribed heat flux and temperature for 

the energy equation. The initial and boundary conditions can be expressed as: 

),()0,( iiniti rTtrT ==                                                             (5) 

ii gu =  on  
igΓ ,     ijij hn =σ  on  

ihΓ ,                                      (6) 

bdTT =  on  
bdTΓ ,     qT ni =),(  on  qΓ .                                      (7) 
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Often free slip (i.e., zero shear stresses and normal velocities) and isothermal 

conditions are applied to the surface and bottom boundaries in studies of mantle 

dynamics, although in some studies surface velocities may be given in consistent with 

surface plate motions. When steady-state or statistically steady state solutions are to be 

sought, as they often are in mantle dynamics, the choice of initial condition can be rather 

arbitrary with affecting the final solutions. 

 Although full time dependent dynamics of thermal convection involves all three 

governing equations, an important subset of mantle dynamics problems, often termed as 

instantaneous Stokes flow problem, only require solutions of equations (1) and (2). For 

the Stokes flow problem, one may consider the dynamic effects of a given buoyancy field 

(e.g., derived from seismic structure) or prescribed surface plate motion on gravity 

anomalies, deformation and stress at the surface and the interior of the mantle [Hager and 

O’Connell, 1981; Hager and Richards, 1984, Ricard et al., 1984]. 

These governing equations require numerical solution procedures for three reasons. i) 
The advection of temperature in equation (2), iiTu , , represents a nonlinear coupling 

between velocity and temperature. ii) The constitutive law or equation (4) often contains 

nonlinearity in that stress and strain rate follow a power law relation. That is, the 

viscosity η in equation (4) can only be considered as effective viscosity that depends on 

stress, strain rate or flow velocity. iii) Even for the Stokes flow problem with a linear 

rheology, spatial variability in viscosity can make any analytic solution method difficult 

and impractical.  

Irrespective of numerical methods, the general strategy to solve the coupled 

governing equations consists of the following two steps. i) Solve equations 1 and 2 (i.e., 

the instantaneous Stokes flow problem) for flow velocity for a given buoyancy or 

temperature. ii) Update the temperature to next time step from equation 3, using the 

velocity.  
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3. A Finite Element Method 

Finite element (FE) methods are effective in solving differential equations with 

complicated geometry and material properties. A FE method was first employed in 

studying the effects of non-Newtonian rheology on mantle convection [Parmentier et al., 

1976] and have been since widely used in the studies of mantle dynamics [Christensen, 

1984; Baumgardner, 1985; King et al., 1990; van Keken et al., 1993; Moresi and Gurnis, 

1996; Bunge et al., 1997; Zhong et al., 2000]. This section will go through some of the 

basic steps in using finite element methods in solving governing equations for thermal 

convection.  

The FE formulation for the Stokes flow that is described by equations 1 and 2 is 

independent from that for the energy equation. Hughes [1987] gave detailed description 

on a Galerkin weak form FE formulation for the Stokes flow. Brooks [1980] developed a 

Streamline Upwind Petrov-Galerkin formulation (SUPG) for the energy equation 

involving advection and diffusion. These two formulations remain popular for solving 

these types of problems [Hughes, 2000] and are employed in mantle convection codes 

ConMan [King, 1990] and Citcom/CitcomS [Moresi and Gurnis, 1996; Zhong et al., 

2000]. The descriptions presented here are tailored from Brooks [1981], Hughes [1987], 

and Ramage and Wathen [1994] specifically for thermal convection in an incompressible 

media, and they are also closely related to codes ConMan and Citcom. 

3.1. The Stokes flow: A Weak Formulation, its FE Implementation and Solution 

3.1.1. A Weak Formulation 

The Galerkin weak formulation for the Stokes flow can be stated as: find flow 

velocity iii gvu +=  and pressure P, where ig  is the prescribed boundary velocity in 

equation 6 and ∈iv  V, and ∈P  P , where V is a set of functions in which each function, 



 6

iw , is equal to zero on 
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iw  and q are also called weighting functions. Equation (8) is equivalent to equations (1) 

and (2) and boundary conditions equation (6), provided that izi RaTf δ=  [Hughes, 2000]. 

Equation (8) can be written as 
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where  

)( jkiljlikijklc δδδδη += ,                                             (10) 

 is derived from constitutive equation (4). 

It is often convenient to rewrite  
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and it is straightforward to write the expressions for other type of geometries including 

three-dimensional, axisymmetric [Hughes, 2000], or spherical geometry [Zhong et al., 

2000]. 
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Domain Ω can be discretized with a set of grid points (Figure 1) and the velocity and 

pressure and their weighting functions can be expressed in terms of their nodal values and 

the shape functions: 

i
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where NA is the shape functions for velocity at node A, MB is the shape functions for 

pressure at node B, Ωv  is the set of velocity nodes, Ωp  is the set of pressure nodes, and 
v
gi

Γ is the set of velocity nodes along boundary igΓ . Note that the velocity shape 

functions and velocity nodes can be different from those for pressure (Figure 1).  

Substituting (13) into (11) leads to the following equation: 
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where for two-dimensional plane strain problems 
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Substituting (13) and (14) into (9) leads to the following equation: 
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Because equation (17) holds for any weighting functions wiA and qA, it implies the 

following two equations.  
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Combining (18) and (19) into a matrix form leads to: 
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where the vector V contains the velocity at all the nodal points, the vector P is the 

pressure at all the pressure nodes, the vector F is the total force term resulting from the 

three terms on the right hand side of (18) or (9), the matrices K, G, and GT are the 

stiffness matrix, discrete gradient operator, and discrete divergence operator, respectively, 

which are derived from the first and second terms of (18) and (19), respectively. 

Specifically, the stiffness matrix is given by 

∫=
Ω

Ω jB
T

A
T

ilm edDBBeK rr ,                                         (21) 

where subscripts A and B are the global velocity node numbers as in (13), i and j are the 

degree of freedom numbers ranging from 1 to nsd, and l and m are the global equation 

numbers for the velocity ranging from 1 to nvnsd where nv is the number of velocity nodes. 
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3.1.2. A FE Implementation 

We now present a FE implementation of the Galerkin weak formulation for the 

Stokes flow and the resulting expressions of different terms in (20). We first introduce 

the elements and shape functions. A key feature of finite element method is that a local 

basis function or shape function is used such that the value of a variable within an 

element depends only on that at nodal points of the element. For simplicity, we consider a 

two-dimensional domain with quadrilateral elements. We employ the mixed elements in 

which there are four velocity nodes per element each of which occupies a corner of the 

element, while the only pressure node is at the center of the element (Figure 1). For these 

quadrilateral elements, the velocity interpolation in each element uses bilinear shape 

functions, while the pressure is constant for each element. 

As a general remark on FE modeling of deformation/flow of incompressible media, it 

is important to keep interpolation functions (i.e., shape functions) for velocities at least 

one order higher than those for pressure, as we did for our quadrilateral elements [Hughes, 

2000]. The spurious flow field may arise if this condition is satisfied. The well known 

example is the “mesh locking” that arises from linear triangle elements with constant 

pressure per element for which the incompressibility (i.e., a fixed elemental area) 

constraint per element demands zero deformation/flow everywhere in the domain 

[Hughes, 2000].  

For any given element e, velocity and pressure within this element can be expressed 

through the following interpolation,  

∑
=

==
enn

a
iiaaii evNevv

1

rrr ,  ∑
=

==
enn

b
iibbii ewNeww

1

rrr  ,   ∑
=

==
enn

a
iiaaii egNegg

1

rrr ,      (22) 

∑
=

=
epn

a
aa PMP

1
,    ∑

=
=

epn

a
aaqMq

1
,                                   (23) 



 10

where nen and nep are the numbers of velocity and pressure nodes per element, 

respectively, and nen=4 and nep=1 for our quadrilateral elements. The shape function Na 

for a=1, …, nen, depends on coordinates, and Na is 1 at node a and linearly decreases to 

zero at other nodes of the element. The localness of the shape functions greatly simplifies 

implementation and computational aspects of the Galerkin weak formulation. For 

example, the integrals in (18) and (19) may be decomposed into sum of integrals from 

each element and the matrix equation (20) may be decomposed into sums of elemental 

contributions. Specifically, we may introduce elemental stiffness matrix, discrete gradient 

and divergence operators, and force term. 

][ e
lm

e kk = ,   ge=[ e
lng ], }{ e

l
e ff = ,                                     (24) 

where sdennnml ≤≤ ,1 , epnn ≤≤1  (note that for quadrilateral elements, nen=4, nep=1, 

and nsd=2), ek  is a square matrix of  nennsd by nennsd, and ge is a matrix of nennsd by nep,  
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e
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a
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i
e
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Ω

Ω
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where l=nsd(a-1)+i, m=nsd(b-1)+j, a,b=1,…,nen, and i,j=1,…,nsd,  

e
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e
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where n=1,…,nep, and the rest symbols have the same definitions as before, 
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Determinations of these elemental matrices and force term require evaluations of 

integrals over each element with integrands that involve the shape functions and their 

derivatives. It is often convenient to use isoparameteric elements for which the 

coordinates and velocities in an element have the interpolation schemes [Hughes, 2000]. 

For example, for 2-D quadrilateral elements that we discussed earlier, the velocity shape 
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functions for node a of an element in a parent domain with coordinates )1,1(−∈ξ  and 

)1,1(−∈η  is given as 

 )1)(1(4/1),( ηηξξηξ aaaN ++= ,                                           (28) 

where ),( aa ηξ  is (-1,-1), (1,-1), (1,1) and (-1,1) for a=1, 2, 3 and 4, respectively. The 

pressure shape functions for Ma is 1, as there is only one pressure node per element. 

Although the integrations in (25), (26), and (27) are in the physical domain (i.e., x1 and x2 

coordinates) rather than the parent domain, they can be expressed in the parent domain 

through coordinate transformation. These integrals can be evaluated using numerical 

integration schemes including the Gaussian quadrature. Numerical integration of these 

integrals is discussed in details in Hughes [2000] and will not be discussed here.  

With elemental ek , ge, and ef  determined, it is straightforward to assemble them 

into global matrix equation (20). If an iterative solution method is used to solve (20), one 

may carry out calculations of the left hand side of (20) element by element without 

assembling elemental matrices and force terms into the global matrix equation form (20).  

3.1.3. Solution Methods for the Matrix Equation 

We now discuss solution methods for matrix equation (20). We will focus on iterative 

solution methods, because they require significantly less memory and computation than 

direct solution approaches. Iterative solution approaches are the only feasible and 

practical approaches for 3-D problems. Later we will briefly discuss a penalty 

formulation for the incompressible Stokes flow that requires a direct solution approach 

and is only effective for 2-D problems.  

The matrix on the left hand side of (20), although symmetric, is not positive-definite. 

However, the stiffness matrix K is symmetric positive-definite. Efficient solution 

approaches should take advantage of these special properties. An efficient method is the 

Uzawa algorithm which is implemented in Citcom code [Moresi and Solomatov, 1995]. 
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In the Uzawa algorithm, matrix equation (20) is broken into two coupled systems of 

equations [Atanga and Silvester, 1992; Ramage and Wathen, 1994]:  

FGPKV =+ ,                                                   (29) 

0=VGT .                                                     (30) 

Combining these two equations and eliminating V lead to the discrete Poisson 

equation for pressure [Hughes, 1987] 

FKGPGKG TT 11 )( −− = .                                               (31) 

Notice that matrix GKGK T 1ˆ −=  is symmetric positive definite. Although in practice 

equation (31) cannot be directly used to solve for P due to difficulties in obtaining K-1, 

we may use it to build a pressure correction approach by using a conjugate gradient 

algorithm which does not require construction of matrix K̂  [Ramage and Wathen, 1994]. 

The procedure is presented and discussed in details as follows. 

With the conjugate gradient algorithm, for symmetric positive definite K̂ , the 

solution to a linear system of equations HPK =ˆ  can be obtained with the operations in 

the left column of Figure 2 [Golub and van Loan, 1989, page 523]. 

For equations (29) and (31) for both velocities and pressure, with initial guess 

pressure P0=0, the initial velocity V0 can be obtained from 

FKV =0 ,    or   FKV 1
0

−= ,                                             (32) 

and the initial residual for pressure equation (31), r0, and search direction, s1, are 

0
1

10 VGFKGHsr TT ==== −  (see the left column of Figure 2). To determine the 

search step kα  in the conjugate gradient algorithm, we need to compute the product of 

search direction sk and K̂ , k
T
k sKs ˆ  (Figure 2). This product can be evaluated without 

explicitly constructing K̂  for the following reasons.  

The product can be written as  
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k
T

kk
TT

kk
T
k GsKGsGsKGssKs 11 )(ˆ −− == .                                (33) 

If we define uk, such that  

kk GsKu = ,    or   kk GsKu 1−= ,                                             (34) 

then we have 

k
T

kk
T

kk
T
k uGsGsKGssKs )()(ˆ 1 == − .                                      (35) 

This indicates that if we solve (34) for uk with Gsk as the force term, the product  k
T
k sKs ˆ  

can be obtained without actually forming K̂ . Similarly, ksK̂  in updating the residual rk 

(the left column of Figure 2) can be obtained without forming K̂ , because 

k
T

k
T

k uGGsKGsK == −1ˆ . 

As the pressure P is updated via kkkk sPP α+= −1  from the conjugate gradient 

algorithm (Figure 2), the velocity field can also be updated accordingly via  

kkkk uVV α−= −1 .                                                   (36) 

This can be seen from the following derivation. At iteration step k-1, the pressure and 

velocity are 1−kP  and 1−kV , respectively, and they satisfy equation (29), 

 FGPKV kk =+ −− 11 .                                                   (37) 

At iteration step k, the updated pressure is kP , and the velocity vVV kk += −1 , where v is 

the unknown increment to be determined. Substituting kP  and kV  into (29) and 

considering kkkk sPP α+= −1 , vVV kk += −1 , and (37) lead to  

0=+ kkGsKv α ,   or    kk GsKv 1−−= α .                             (38) 

From (34), it is clear that the velocity increment kkuv α−= , and consequently equation 

(36) updates the velocity. 
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The final algorithm is given in the right column of Figure 2 [Ramage and Wathen, 

1994]. The efficiency of this algorithm depends on how efficiently equation (34) is 

solved. The stiffness matrix K is symmetric positive definite, and this allows for 

numerous possible solution approaches. For example, multi-grid solvers have been used 

for solving (34) [Moresi and Solomatov, 1995] as in Citcom code. Newer versions of 

Citcom including CitcomS/CitcomCU employ full multigrid solvers with a consistent 

projection scheme for (34) and are even more efficient [Zhong et al., 2000]. Pre-

conditioning for the pressure equation can be of great help in improving the convergence 

for the pressure field, as discussed in Moresi and Solomatov [1995].  

3.2. The Stokes flow: A Penalty Formulation 

For 2-D problems, an efficient method to solve the incompressible Stokes flow is a 

penalty formulation with a reduced and selective integration. This method has been 

widely used in 2-D thermal convection problems, for example, in ConMan [King et al., 

1990]. We now briefly discuss this penalty formulation, and detailed descriptions can be 

found in Hughes [2000].  

The key feature in the penalty formulation is to allow for slight compressibility or 

0, ≈kku . Here it is helpful to make an analogy to isotropic elasticity. The constitutive 

equations for both compressible and incompressible isotropic elasticity are given by the 

following two equations, 

)( ,, ijjiijij uuP ++−= ηδσ ,                                      (39) 

0/, =+ λPu kk ,                                               (40) 

where λ is the Lame constant which is finite for compressible media but infinite for 

incompressibility media (i.e., to satisfy 0, =kku  for finite P). To allow for slight 

compressibility, λ is taken finite but significantly larger than η, such that the error 
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associated with the slight compressibility is negligibly small. Using words of 64 bit long 

(i.e., double precision), λ/η ~107 is effective. For finite λ, the constitutive equation 

becomes 

)( ,,, ijjiijkkij uuu ++= ηδλσ ,                                      (41) 

which replaces equation (4).  

An interesting consequence of this new constitutive equation is that the pressure is no 

longer needed in the momentum equation, and this simplifies the finite element analysis. 

The weak form of the resulting Stokes flow problem is  

Ω
Ω
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1
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where  

)( jkiljlikklijijklc δδδδηδλδ ++= .                                     (43) 

The FE implementation of equation (42) is similar to that in section 3.1. With the 

pressure excluded as a primary variable, the matrix equation is simply  

[ ]{ } { }FVK = .                                                       (44) 

While the elemental force vector is defined the same as that in (27), the elemental 

stiffness needs some modification in comparison with that in (25). 
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where the first integral is the same as in (25) but the second integral is a new addition 

with  
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The matrix equation (44) only yields correct solution for velocities if a reduced and 

selective integration scheme is used to evaluate the elemental stiffness matrix [e.g., 

Hughes, 2000]. Specifically, the numerical quadrature scheme for the second integral of () 

needs to be one order lower than that used for the first integral. For example, if for a 2-D 

problem a 2x2 Gaussian quadrature scheme is used to evaluate the first integral, then a 

one-point Gaussian quadrature scheme is needed for the second integral. Hughes [2000] 

discussed the equivalence theorem for the mixed elements and the penalty formulation 

with the reduced and selective integration. Moresi et al. [1996] showed that these two 

formulations yield essentially identical results for the Stokes flow problems by 

comparing solutions from ConMan code employing a penalty formulation and Citcom 

which uses a mixed formulation. 

Finally, we make two remarks about this penalty formulation.  

First, although the pressure is not directly solved from the matrix equation, the 
pressure can be obtained through post-processing via kkuP ,λ−=  for each element. Such 

obtained pressure fields often display a checkerboard pattern. However, a pressure 

smoothing scheme [Hughes, 2000] seems to work well. The pressure field is important in 

many geophysical applications including computing dynamic topography and melt 

migration.  

Second, with λ/η ~107, the stiffness matrix is not well conditioned and is not suited 

for any iterative solvers. A direct solver is required for this type of equations, as done in 

ConMan. This implies that this formulation may not be applicable to 3-D problems 

because of the memory and computation requirements associated with direct solvers. 

Reducing λ/η improves the condition for the stiffness matrix, however, this is not 

recommended as it results in large error associated with compressibility.  

3.3. The SUPG Formulation for the Energy Equation 
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This section introduces a SUPG (streamline upwind Petrov-Galerkin) formulation and 

a predictor-multicorrector explicit algorithm for time dependent energy equation (i.e., 

equation 3). This method was developed by Hughes [1987] and Brooks [1981] some 

twenty years ago and remains an effective method in finite element solutions of the 

equations with advection and diffusion such as our energy equation. Finite element 

mantle convection codes Citcom and ConMan both employ this method for solving the 

energy equation.  

A weak form formulation for the energy equation (3) and boundary conditions (7) is 

[Brooks, 1981],  

∑ Ω−−∫ ++Ω∫+Ω∫ +
ΩΩΩ e

iiiiiiii dTTuTwdTwdTuTw
e

])([)()( ,,,,,, γκκ &&     

Ω∫−Γ∫+Ω∫=
ΩΓΩ

dgwqdwdw ii
q

,, κγ ,                                         (47) 

where w is the regular weighting functions and is zero on Γq, T&  is the time derivative of 

temperature, and w  is the streamline upwind contribution to the weighting functions.  

The finite element implementation of (47) is similar to what was discussed for the 

Stokes flow in section 3.1.2. While the weighting function w is similar to what was 

defined in (22) except it is now a scalar, the streamline upwind part w  is defined through 

artificial diffusivity κ~  as  

||/ˆ~
, uwuw jjκ= ,                                                   (48) 

where |u| is the magnitude of flow velocity, ||/ˆ uuu jj =  represents the directions of 

flow velocity, and κ~  is defined as 

2/)~(~
1

∑=
=

sdn

i
iii huξκ ,                                                   (49) 
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where ui and hi are flow velocity and element lengths in certain directions. It should be 

pointed out that (49) and (50) are empirical and other forms are possible. Such defined 

streamline upward weighting function w  can be thought as adding artificial diffusion to 

the actual diffusion term to lead to total diffusivity, 

jiuu ˆˆ~κκ + .                                                   (51) 

w  is discontinuous across elemental boundaries, different from w. This is why the 

integral in the third term of (47) is for each element. www +=~  is also sometimes called 

the Petrov-Galerkin weighting functions. 

A reasonable assumption is the weighted diffusion for an element in the third term of 

(47), iiTw ,, )(κ , is negligibly small. Therefore, (47) can be written as 

∑ Ω−∫ ++Ω∫
ΩΩ e

iiii dTuTwdTw
e

)(~)( ,,, γκ & Ω∫−Γ∫=
ΩΓ

dgwqdw ii
q

,, κ .          (52)   

We now present relevant matrices at an element level. The T&  term in (47) implies 

that a mass matrix is needed and it is given as 

∫ Ω=
Ωe

dNNm ba
e
ab ,                                            (53) 

where a,b=1,…,nen. 

Elemental stiffness ek  is,  

∫ Ω=
Ωe

dBBk b
T

a
e
ab κ ,                                               (54) 

where for 2-D problems 

( )2,1, aa
T

a NNB = .                                          (55) 
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Elemental force vector ef  is given as,            

  e
b

n

b

e
abaa

e
a gkqdNdNf

en

e e
q

∑−∫ ∫ Γ+Ω=
=Ω Γ 1

~ γ  ,                           (56) 

where aN~  is the Petrov-Galerkin shape function. 

Elemental advection matrix ec  is given as,            

  ∫ Ω=
Ωe

dNuNc ibia
e
ab ,

~  ,                                        (57) 

The combined matrix equation may be written as 

FCKM =Φ++Φ )(& ,                                          (58) 

where Φ is the unknown temperature, and M, K, C, and F are the total mass, stiffness, 

advection matrices and force vector assembled from all the elements.  

 

Equation (58) can be solved a predictor-corrector algorithm [Hughes, 2000] with 

some initial condition for temperature (e.g., equation 5). Suppose that temperature and its 

time derivative at time step n are given, nΦ  and nΦ& , the solutions at time step n+1 with 

time increment Δt can be obtained with the following algorithm: 

1) Predictor:     nnn t Φ−Δ+Φ=Φ +
&)1(0

1 α ,   00
1 =Φ +n

& ,  iteration step i=0,        (59) 

2) Solving:     ))(( 1111
* i

n
eei

n
ee

ne

i
n ckmfM ++++ Φ+−Φ−∏=ΦΔ && ,                        (60) 

3) Corrector:   i
n

i
n

i
n t 11

1
1 ++

+
+ ΦΔΔ+Φ=Φ &α ,   i

n
i
n

i
n 11

1
1 ++

+
+ ΦΔ+Φ=Φ &&& ,                        (61) 

4) If needed, set iteration step i= i +1 and go back step 2.  

We make four remarks for this algorithm. First, this method is 2nd order accurate if 

α=0.5 [Hughes, 2000]. Second, typically two iterations are sufficient. Third, in (60), ∏   
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represents the operation of assembling elemental matrix into global matrix, and M* is the 

lumped mass matrix which essentially makes this scheme an explicit scheme. Fourth, 

time increment Δt needs to satisfy Courant time stepping constraints to make the scheme 

stable.  

4. Incorporating More Realistic Physics 

In section 2, we presented the governing equations for thermal convection in a 

homogeneous incompressible fluid with a Newtonian (linear) rheology and the 

Boussinesq approximation. However, the Earth’s mantle is likely much more complicated 

with heterogeneous composition and non-Newtonian rheology. In addition, non-

Boussinesq effects such as solid-solid phase transitions may play an important role in 

affecting the dynamics of the mantle. In this section, we will discuss the methods that 

help incorporate these more realistic physics in studies of mantle convection. We will 

focus on modeling thermochemical convection, solid-state phase transitions, and non-

Newtonian rheology. 

4.1. Thermochemical Convection 

Thermal convection for a compositionally heterogeneous mantle has gained a lot of 

interests in recent years [Lenardic and Kaula, 1993; Tackley, 1998; Davaille, 1999; 

Kellogg et al., 1999], with focus on the roles of mantle compositional anomalies and 

crustal structure in mantle dynamics. This is also called thermochemical convection. 

Different from purely thermal convection for which the fluid has the same composition, 

thermochemical convection involves fluids with different compositions.  Here we will 

present governing equations and numerical methods for solving these equations.   

4.1.1. Governing equations 

Governing equations for thermochemical convection include a transport equation that 

describes the movement of compositions, in addition to the conservation laws of the mass, 
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momentum and energy (i.e., equations 1-3). Suppose that C describes the compositional 

field, the transport equation is 

0, =+
∂
∂

iiCu
t
C .                                                   (62) 

This transport equation is similar to the energy equation (3) except that it does not 

contain diffusive and source terms. For a two-component system such as the crust-mantle 

system or depleted-primordial mantle system, C can be either 0 or 1, representing either 

component. If the fluids of different compositions have intrinsically different density, 

then the momentum equation (2) needs to be modified to take into account of the 

compositional effects on the buoyancy  

      0)(, =−+ izjij CTRa δβσ ,                                                   (63) 

where β is the buoyancy number [van Keken et al., 1997; Tackley and King, 2003] and is 

defined as 

      )/( αρρβ TΔΔ= ,                                                        (64) 

where Δρ is the density difference between the two compositions, ρ and ΔT are the 

reference density and temperature, and α is the reference coefficient of thermal expansion.  

A special class of thermochemical convection problems examine how the mantle 

compositional heterogeneity is stirred by mantle convection [e.g., Gurnis and Davies, 

1986; Kellogg, 1992; van Keken and Zhong, 1999]. For these studies on the mixing of 

the mantle, we may assume that the fluids with different composition have identical 

density with β=0.  

5.1.2. Solution approaches 

Solving the conservation equations of the mass, momentum and energy for 

thermochemical convection is identical to what was introduced in section 3 for purely 

thermal convection. The additional compositional buoyancy term in the momentum 
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equation (63) does not present any new difficulties numerically, provided that the 

composition C is given. The new challenge is to solve the transport equation (62) 

effectively.  

A number of techniques have been developed or adapted in solving the transport 

equation in thermochemical convection studies. They include a field method with a filter 

[e.g., Lenardic and Kaula, 1993], a marker chain method [van Keken et al., 1997; Zhong 

and Hager, 2003], and a particle method [e.g., Schmeling, 1993; Tackley, 1998; Tackley 

and King, 2003]. As reviewed by van Keken et al. [1997], while these techniques work to 

some extent, they also have their limitations, particularly in treating entrainment and 

numerical diffusion of composition C. We will briefly discuss each of these methods with 

more emphasis on the particle method. 

In the particle method, the transport equation for C (i.e., 62) is not solved directly. 

Composition C at a given time is represented by a set of particles. This representation 

requires a mapping from the distribution of particles to compositional field C which is 

often represented on a numerical mesh. With the mapping, to update C, all that is needed 

is to update the position of each particle to obtain a updated distribution of particles. This 

effectively solves the transport equation for C.   

Two different particle methods have been used to map distribution of particles to C: 

absolute and ratio methods [Tackley and King, 2003]. In the absolute method, particles 

are only used to represent one type of composition (e.g., for dense component or with 

C=1). The population density of particles can be mapped to C. For example, C for an 

element/grid cell with volume Ωe and particles Ne can be given as 

      eee ANC Ω= / ,                                                        (65) 

where the constant A is the reciprocal of initial density of particles for composition C=1 

(i.e., total number of particles divided by the volume of composition C=1). Clearly, the 

absence of particles in an element/grid cell represents C=0. A physical unrealistic 
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situation with C>1 may arise due to statistical fluctuations in particle distribution or 

particle settling. Therefore, for this method to work effectively, a large number of 

particles are required [Tackley and King, 2003].  

In the ratio method, two different types of particles are used to represent the 

compositional field C, type 1 for C=0 and type 2 for C=1. C for an element/grid cell that 

includes type 1 particles N1 and type 2 particles N2 is given as 

      )/( 212 NNNCe += .                                                        (66) 

In the ratio method, C can never be greater than 1. Tackley and King [2003] found that 

the ratio method is particularly effective in modeling thermochemical convection in 

which the two components occupy similar amount of volumes.  

We now discuss briefly procedures to update the positions of particles. One 

commonly used method is a high order Runge-Kutta method [e.g., van Keken et al., 

1997]. Here we present a predictor-corrector scheme for updating the particle positions 

[e.g., Zhong and Hager, 2003]. Suppose that at time t = t0 , flow velocity is 0ur  and 

compositional field is C0 that is defined by a set of particles with coordinates,   
r 
x 0

i , for 

particle i. The algorithm for solving composition at the next time step t = t0 + dt = t1, C1, 

can be summarized as follows:  

(1) Using a forward Euler scheme, predict the new position for each particle i with 
dtuxx ii

p 001
rrr

+=  and mapping the particles to compositional field C1p at t = t1.     

(2) Using the predicted C1p, solve the Stokes equation for new velocity   
r 
u 1p . 

(3) Using a modified Euler scheme with second order accuracy, compute the position 

for each particle i with   
r 
x 1

i =
r 
x 0

i + 0.5(
r 
u 0 +

r 
u 1p)dt  and compositional field C1 at t = t1.  

The marker chain method is similar to the particle method in a number of ways.  In 

the marker chain method, composition C is defined by an interfacial boundary that 

separates two different components. The interfacial boundary is a line for 2-D problems 

or a surface for 3-D. Using the flow velocity, one tracks the evolution of the interfacial 
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boundary and hence composition C. Often the interfacial boundary is represented by 

particles or markers. Therefore, updating the interfacial boundary is essentially the same 

as updating the particles in the particle method. Composition C on a numerical grid 

which is desired for solving the momentum and energy equations (63) and (3) can be 

obtained by projection. As van Keken et al. [1997] indicated, the marker chain method is 

rather effective for compositional anomalies with relatively simple structure and 

geometry in 2-D.  

The field method is probably the most straightforward. By setting diffusivity to be 

zero, we can employ the same solver for the energy equation (e.g., in section 3.3) to solve 

the transport equation for C. However, this often introduces numerical artifacts including 

numerical oscillations and numerical diffusion. Lenardic and Kaula [1993] introduced a 

filter scheme that removes the numerical oscillations while conserving the total mass of 

compositional field.  

4.2. Non-Newtonian Rheology 

Laboratory studies suggest that the deformation of olivine, the main component in the 

upper mantle, follows a power-law rheology [e.g., Karato and Wu, 1993]:   

nAτε = ,                                                    (67) 

where ε is the strain rate, τ is the deviatoric stress, the pre-exponent constant A represents 

other effects such as grain size and water content, and the exponent n is ~3. The 

nonlinearity in the rheology arises from 1≠n .  

The effects of non-Newtonian rheology on mantle convection were first investigated 

by Parmentier et al. [1978] and Christensen [1984]. More recent efforts have been 

focused on how non-Newtonian rheology including visco-plastic rheology may lead to 

dynamic generation of plate tectonics [King and Hager, 1991; Bercovici, 1994; Moresi 

and Solomatov, 1998, Zhong et al., 1998; Tackley, 1998]. 
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Solutions of non-linear problems in general require an iterative approach. The power-

law rheolgy may be written as an expression for effective viscosity 

ijeffijij P εηδσ 2+−= ,                                              (68) 

  n
n

eff A

−

==
1

1/ εετη ,                                             (69) 

where ε in (69) is the second invariant of strain rate tensor, 

2/1)
2
1( ijijεεε = .                                              (70) 

It is clear that the effective viscosity depends on strain rate which in turn depends on 

flow velocity. Therefore, a general strategy for this problem is: 1) starting with some 

guessed effective viscosity, solve the Stokes flow problem for flow velocities; 2) update 

the effective viscosity with the newly determined strain rate, and solve the Stokes flow 

again; 3) keep this iterative process until flow velocities are convergent.  

Implementation of this iterative scheme is straightforward. The convergence for this 

iterative process depends on the exponent n. For regular power-law rheology with n~3, 

convergence is usually not a problem. However, for large n (e.g., in case of visco-plastic 

rheology), the iteration may converge very slowly or may diverge. Often some forms of 

damping may help improve convergence significantly.  
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Figure 2. The left column is the original conjugate gradient algorithm, and the right 

column is the modified algorithm for solving (29) and (31). 
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